Domaine | Science | Sous domaine | Mathématiques | ||
Section | Scientifique | Option | Math-Physique | ||
Discipline | Mathématique | Classe | 6ème | ||
Matériel didactique | La latte, craie de couleur, la voie. | Auteur | SCHOOLAP.COM | ||
Objectif opérationnel | A l’issue de la leçon, l’élève sera capable de définir l’équation exponentielle et de résoudre un exercice à l’aide de principe de résolution en 5 minutes. | ||||
Réference | Maitriser les math 5e, pp 45-47. | ||||
Activité initiale |
|||||
Rappel Résoudre dans IR, l’équation suivante : log(x+1)+colog3 = log (2x -3) + log7 |
Rappel X+1 X ˃ -1 ] -1, +∞ [ ] 3/2, +∞ [ log(x+1)3=log(27−3) x+13=14x−21 X+1 = 42x-63 -41x = -64 X = 64/41 S = {64/41} |
||||
Motivation Qu’appelle-t-on une équation logarithmique ? |
Motivation Est une équation dans laquelle l’inconnue est dans l’expression des logarithmes. |
||||
Comment appelle-t-on les équations où l’inconnue est dans l’exposant ? |
L’équation où l’inconnue est dans l’exposant est appelée équation exponentielle. |
||||
Annonce du sujet Qu’allons-nous étudier aujourd’hui en math ? |
Annonce du sujet Aujourd’hui nous allons étudier les équations logarithmiques. |
||||
Activité principale |
|||||
Qu’est-ce qu’une équation exponentielle ? |
Equations exponentielles a. Définition : une équation exponentielle est une équation dans laquelle l’inconnue intervient en exposant. |
||||
Comment peut-t-on résoudre une équation exponentielle ? |
b. Résolution La résolution d’une équation exponentielle se résume dans l’un de cas suivants : 1.au(x)=av(x)<==˃u(x)=v(x). Exemple :
X²-3x+2x-2 = 0 X²-x-2 = 0 ∆ = (-1)²-4(1)(-2) = 9 √∆=±√9 = ± 3 S = {-1, 2} 2.au(x)=b,bϵIR+==˃logaau(x)=logab U(x)logaa=logab
Exemple : résoudre dans IR, l’équation suivante : 2x=5==˃log22x=log25 ==˃x2log22=log25
3. Autres types d’équations Ce sont des équations qui, après transformation se ramènent à un de cas précédents. Exemples: 5x+1+2.5−x=7 Posons t= 5x 5t + 2/t = 7 5t²-7t+2 = 0 ∆=49 – 5(5)(2) = 49 -40 = 9 √∆=±√9 = ±3 Pour t = 1 pour t = 2/5 1=5x 5x=2/5 log51=log55x log55x=log52/5 xlog55=log51 xlog55=log52/5 x = 0 x=log2/5 S= { 0, log2/5 } |
||||
Synthèse |
|||||
Résoudre dans IR, les équations suivantes : a.4x+1+31.2x−1=2 {53x=25y−19y=3x+1 c.3x2−3x+5=27 d.3x=3√9 |
Posons b = 2x 4b²+\frac{31b}{2}=2 8b²+31b-4 = 0 ∆ = (31)²- 4 (8).(-4) = 961+128 = 1089 = ±33 à rejeter 2^x = 1/8 ==˃ 2^x= \frac{1}{2^3}==˃ 2^x = 2^{-3} ==˃ x = -3 |
||||
Résoudre dans IR, l’équation suivante : 2^{4x}-6.2^{3x}+6.2^x-1= 0 8^{2x}-3.8^x= 4 6^x+\frac{1}{6^x}-2=0 |
2^{4x}-6.2^{3x}+6.2^x-1= 0 Posons t=2x t^4-6t^3+6t-1 = 0 (t^4-1)+(-6t^3+6t)= 0 (t^4-1)-6t(t^2-1)= 0 (t²-1)( t²+1)-6t(t²-1) = 0 (t²-1)( t²+1-6t) = 0 (t²-1)( t²-6t+1) = 0 (t-1)( t+1)( t²-6t+1) = 0 t=1 t= -1 ∆= 36-4(1).(1) = 32 \sqrt[]{∆} = ±\sqrt[]{32} = ±2\sqrt[]{2} |